
2025/12/28 17:49 1/11 Setup Debian Repository (Apache)

Fixes | Public BIT Wiki - http://fixes.brecht-schule.hamburg/

Setup Debian Repository (Apache)

This tutorial will cover how to create a debian (.deb) package, which just prints one line when
executed. This package is then hostet on an apache2-based repository.

Prerequisites: Install following packages:

sudo apt-get install -y gcc dpkg-dev gpg curl apt-utils

Build custom package

Create executeable package

Firstly create directory ~/build/:

mkdir -p ~/build/firstpkg/

Enter the directory and create a file called main.c with the following content. You can use any editor
therefore.

#include <stdio.h>
int main() {
 printf("That worked!\n");
 return 0;
}

Then create an executeable:

gcc -o firstpkg main.c

The default naming scheme for .deb packages looks like this:

<package-name>_<version>-<release-number>_<architecture>

We will replace these variables with the following:

Varibale Value
package-name firstpkg
version 0.0.1
release-number 1
architecture amd64/arm64

The release number is usually set to 1, only in case there was an error when packaging, this number
would be changed.

Last update: 2025/02/11 08:12 linux:debian:setup-repository http://fixes.brecht-schule.hamburg/linux/debian/setup-repository

http://fixes.brecht-schule.hamburg/ Printed on 2025/12/28 17:49

Next create a directory with replaced variables and the subdirectories usr/bin and DEBIAN:

mkdir -p ~/build/firstpkg_0.0.1-1_amd64

mkdir -p ~/build/firstpkg_0.0.1-1_amd64/usr/bin/

mkdir -p ~/build/firstpkg_0.0.1-1_amd64/DEBIAN

Now copy the executeable to the binary directory:

cp ~/build/firstpkg/firstpkg ~/build/firstpkg_0.0.1-1_amd64/usr/bin/

To clearly identify packages, each package requires a control file under DEBIAN/:

touch ~/build/firstpkg_0.0.1-1_amd64/DEBIAN/control

Add the following lines to this file:

Package: firstpkg
Version: 0.0.1
Maintainer: example <example@example.com>
Depends: libc6
Architecture: amd64
Homepage: http://example.com
Description: just a test package

Remember to select the correct architecture (arm64/amd64/armhf/ or whatever you are
creating the package for.)

Build a .deb package

Now build the package:

dpkg --build ~/build/firstpkg_0.0.1-1_amd64

If everything worked correctly there should be one file named firstpkg_0.0.1-1_amd64.deb as
output in the current directory.

Finally you can view package information with:

dpkg-deb --info ~/build/firstpkg_0.0.1-1_amd64.deb

dpkg-deb --contents ~/build/firstpkg_0.0.1-1_amd64.deb

The output of the last command should contain the executeable.

2025/12/28 17:49 3/11 Setup Debian Repository (Apache)

Fixes | Public BIT Wiki - http://fixes.brecht-schule.hamburg/

Try to install this package with:

sudo apt install ./firstpkg_0.0.1-1_amd64.deb

And run it with:

firstpkg

If the output equals That worked! everything worked :).

Remove it again with:

sudo apt remove firstpkg

This part was sourced from earthly.dev - Creating and hosting your own deb packages.

Setup repository server

Therefore this guide uses the apache webserver.

Create directories

The root path should be /srv/repo/. Within this directory two subdirectories are required:
pool/main and dists/stable. The the first one will contain all binaries, the second one the
Release files.

mkdir -p /srv/repo/

mkdir -p /srv/repo/pool/main

mkdir -p /srv/repo/dists/stable

Setup apache2

This guide uses the apache2 server, therefore install apache2:

apt install apache2

Next remove the default sites:

rm /etc/apache2/sites-available/000-default.conf

rm /etc/apache2/sites-available/default-ssl.conf

https://earthly.dev/blog/creating-and-hosting-your-own-deb-packages-and-apt-repo/

Last update: 2025/02/11 08:12 linux:debian:setup-repository http://fixes.brecht-schule.hamburg/linux/debian/setup-repository

http://fixes.brecht-schule.hamburg/ Printed on 2025/12/28 17:49

And create the new repository site::

sudo nano /etc/apache2/sites-available/repository.conf

The <servername> and <serveralias> variables are replaced with your servername, e.g.
repository.yourdomain.com. And the DocumentRoot should be set to the point of your
filesystem, where your repository should start, e.g. /srv/repo.

Paste this content with changed variables to the site config:

Show/Hide repository.conf

<VirtualHost *:80>
 # The ServerName directive sets the request scheme, hostname and
port that
 # the server uses to identify itself. This is used when creating
 # redirection URLs. In the context of virtual hosts, the ServerName
 # specifies what hostname must appear in the request's Host: header
to
 # match this virtual host. For the default virtual host (this file)
this
 # value is not decisive as it is used as a last resort host
regardless.
 # However, you must set it for any further virtual host explicitly.

 #ServerAdmin webmaster@localhost
 DocumentRoot </path/to/root>
 ServerName <servername>
 ServerAlias <serveralias>

 # Available loglevels: trace8, ..., trace1, debug, info, notice,
warn,
 # error, crit, alert, emerg.
 # It is also possible to configure the loglevel for particular
 # modules, e.g.
 #LogLevel info ssl:warn

 # HTTP Strict Transport Security (63072000 seconds)
 Header always set Strict-Transport-Security "max-age=63072000"

 # Setting this header will prevent MSIE from interpreting files as
something
 # else than declared by the content type in the HTTP headers.
 Header setifempty X-Content-Type-Options: "nosniff"

 # Setting this header will prevent location disclosure to third
party sites,
 # e.g. if a user follows a link outside of our SLD.
 Header setifempty Referrer-Policy: "strict-origin"

2025/12/28 17:49 5/11 Setup Debian Repository (Apache)

Fixes | Public BIT Wiki - http://fixes.brecht-schule.hamburg/

 # Block pages from loading when they detect reflected XSS attacks
 Header setifempty X-XSS-Protection: "1; mode=block"

 <Directory "/srv/repo">
 Allow from all
 AllowOverride All
 Options Indexes FollowSymlinks
 Require all granted

 <Files packages-amd64.db>
 Require all denied
 </Files>

 <Files packages-arm64.db>
 Require all denied
 </Files>

 <Files packages-armhf.db>
 Require all denied
 </Files>
 </Directory>
 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Create GPG Keys

To securely update from the repository the Releases file will be signed with a GPG - GNU Privacy
Guard-key.

These keys will be generated in a safe environment, therefore create a temporary directory:

mktemp -d XXXX

The new four XXXX will automatically be replaced with random letters.

Next set the directory for GPG:

export GNUPGHOME=/path/to/tmp/dir

Finally generate the keypair with the following settings:

gpg --full-generate-key

Request Selection
Kind of Key 1 (RSA and RSA)
Keysize 3072
Expiring 0 (never)

https://de.wikipedia.org/wiki/GNU_Privacy_Guard
https://de.wikipedia.org/wiki/GNU_Privacy_Guard

Last update: 2025/02/11 08:12 linux:debian:setup-repository http://fixes.brecht-schule.hamburg/linux/debian/setup-repository

http://fixes.brecht-schule.hamburg/ Printed on 2025/12/28 17:49

A name must be entered, email address and comment can be left empty. You can also enter a
password or just skip the prompts, it's your decision.

To view all created keys use this command:

gpg --list-secret-keys --keyid-format=long

Now create the public key file:

gpg --armor --export <ID> > public.key

Replace <ID> with the value behind sec rsaXXXX/ when running the command above. To make the
public key accessible so that it can be installed, copy it to the root-path of the repository, e.g.:

cp public.key public.key /srv/repo/PublicReleaseKey.gpg

Also export the secret/private key file:

gpg --armor --export-secret-keys <ID> > private.key

Remind to store this file carefully!

The ID of the just created key is later required to sign the Release files properly, so maybe save this
ID somewhere.

If getting the error No such file and directory when running gpg –full-generate-key try
restarting the gpg agent:

gpgconf --kill gpg-agent

Sourced from unix.stackexchange.org

Create Release files

To create the Packages, Contents and Release files we use the command apt-ftparchive that is
part of the apt-utils package.

apt-ftparchive requires two configuration files:

Show/Hide files

aptgenerate.conf

Dir::ArchiveDir "/srv/repo/";
Dir::CacheDir "/srv/repo/";
TreeDefault::Directory "pool/";
TreeDefault::SrcDirectory "pool/";
Default::Packages::Extensions ".deb";
Default::Packages::Compress ". gzip bzip2";

https://unix.stackexchange.com/questions/318385/no-such-file-or-directory-when-generating-a-gpg-key

2025/12/28 17:49 7/11 Setup Debian Repository (Apache)

Fixes | Public BIT Wiki - http://fixes.brecht-schule.hamburg/

Default::Sources::Compress ". gzip bzip2";
Default::Contents::Compress "gzip bzip2";

Tree "dists/stable" {
 Sections "main";
 Architectures "armhf amd64 arm64";
};

aptrelease.conf

APT::FTPArchive::Release {
 Origin "repository.yourdomain.com";
 Label "repository.yourdomain.com";
 Suite "stable";
 Codename "stable";
 Architectures "amd64 i386 arm64 armhf";
 Components "main";
 Description "My first repository!";
 Version "1.0";
};

Remind to adjust values like Dir::ArchiveDir, Dir::CacheDir, Origin, Label,
Architectures and Description.

Now create the Packages and Contents file:

apt-ftparchive -c=/path/to/aptrelease.conf generate
/path/to/aptgenerate.conf

Next create the unsigned Release file:

apt-ftparchive release -c=/path/to/aptrelease.conf <path-to-basedir> >
<path-to-basedir>/Release

In this case path-to-basedir would be /srv/repo/dists/stable.

More information about the Release files can be found here: wiki.debian.org

Sign Release file

Firstly create the Release.gpg file:

gpg --yes --pinentry-mode loopback --default-key <ID> -abs -o <path-to-
basedir>/Release.gpg <path-to-basedir>/Release

https://wiki.debian.org/DebianRepository/Format

Last update: 2025/02/11 08:12 linux:debian:setup-repository http://fixes.brecht-schule.hamburg/linux/debian/setup-repository

http://fixes.brecht-schule.hamburg/ Printed on 2025/12/28 17:49

path-to-basedir would again be /srv/repo/dists/stable, and ID the ID of the created GPG
key: Create GPG Keys.

And finally create the InRelease file:

gpg --yes --pinentry-mode loopback --default-key <ID> --clearsign -o <path-
to-basedir>/InRelease <path-to-basedir>/Release

This file will later be sourced from APT to index the repository.

Add custom repository

Finally add your local repository. There are several ways:

Proper way

Firstly install the key:

curl -sS http://repository.yourdomain.com/PublicReleaseKey.gpg | gpg --
dearmor | sudo tee /usr/share/keyrings/repository.yourdomain.com.gpg >
/dev/null

The command gets the file, dearmors the downloaded file and saves the content (key) to a file within
the keysrings directory. The > /dev/null suppresses the unreadable output of the –dearmor
command.

Then add the repository to /etc/apt/sources.list.d/:

echo "deb [signed-by=/usr/share/keyrings/repository.yourdomain.com.gpg]
http://repository.yourdomain.com/ stable main" | sudo tee
/etc/apt/sources.list.d/repository.yourdomain.com.list

Now apt can source your local repsitory securely, try it by installing the test-package:

sudo apt update && sudo apt install firstpkg

Deprecated ways

The most simple way is to 'install' the key:

curl -sS http://repository.yourdomain.com/PublicReleaseKey.gpg | sudo apt-
key add -

But this will show warnings (! not errors), everytime you update., because it's a legacy method to
store keys for apt-repositories.

There's another deprecated way:

2025/12/28 17:49 9/11 Setup Debian Repository (Apache)

Fixes | Public BIT Wiki - http://fixes.brecht-schule.hamburg/

curl -sS http://repository.yourdomain.com/PublicReleaseKey.gpg | gpg --
dearmor | sudo tee /etc/apt/trusted.gpg.d/repository.gpg

It works also but isn't expected from the APT developers, consider using the method described above
in this guide.

For both methods the repository has to be added this way:

sudo nano /etc/apt/sources.list.d/repository.yourdomain.com.list

With content:

local - repository
deb http://repository.yourdomain.com/ stable main

Repository extensions

There is a little helper when self-hosting a repository, more information can be found here: Extensions
for self hosted Repository

Additional settings

When using a standard dir as GNUPGHOME, set correct permissions on this directory:

find ~/.gnupg -type f -exec chmod 600 {} \;
find ~/.gnupg -type d -exec chmod 700 {} \;

Explanation for 600, 700:

Lets start from the back: 00 mean NO rights AT ALL for everybody who is not the owner of the
files/directories.

That means, that the process reading these (gnupg) must run as the owner of these files/directories.

~/.gnupg/ is a folder, the process reading the contents must be able to “enter” (=execute) this
folder. This is the “x” Bit. It has the value 1. 7 - 6 = 1

Both ~/.gnupg/ and ~/.gnupg/* you want to be able to read and write, thats 4 + 2 = 6.

⇒ Only the owner of the files can read/write them now (=600). Only he can enter into the directory as
well (=700)

⇒ These file rights don't “need” to be documented, they are derivable from the intended usage.

More info about permission notation: wikipedia.org - FS permissions

http://fixes.brecht-schule.hamburg/linux/debian/self-hosted-repo-extension
http://fixes.brecht-schule.hamburg/linux/debian/self-hosted-repo-extension
https://en.wikipedia.org/wiki/File_system_permissions#Notation_of_traditional_Unix_permissions

Last update: 2025/02/11 08:12 linux:debian:setup-repository http://fixes.brecht-schule.hamburg/linux/debian/setup-repository

http://fixes.brecht-schule.hamburg/ Printed on 2025/12/28 17:49

Sourced from superuser.com - Correct permissions for .gnupg file dir

Sign Release file automatically with passphrase:

gpg --yes --pinentry-mode loopback --passphrase-file /path/to/passphrase-
file --default-key <ID> --clearsign -o /path/to/InRelease /path/to/Release

Sources

This guide was sourced from several pages:

earthly.dev
unix.stackexchange.com - Generating GPG Key Error
unix.stackexchange.com - Generate Release file
unix.stackexchange.com - Avoid prompts when signing file
superuser.com - Correct permissions for .gnupg file dir
medium.com/
itsfoss.com

Other helpful commands

Create Packages file with dpkg-scanpackages: (run in base directory of repository e.g.
/srv/repo/)

dpkg-scanpackages --arch amd64 pool/ > dists/stable/main/binary-
amd64/Packages

Create compressed Packages file:

cat dists/stable/main/binary-amd64/Packages | gzip -9 >
dists/stable/main/binary-amd64/Packages.gz

Generate Package files:

apt-ftparchive generate /path/to/aptgenerate.conf

Create Release file:

apt-ftparchive -c /root/apt-ftp-files/aptrelease.conf release /srv/ext-
stor/repo/ > /srv/ext-stor/repo/dists/stable/Release

Signing Release file:

gpg --default-key <ID> -abs -o Release.gpg Release

https://superuser.com/questions/954509/what-are-the-correct-permissions-for-the-gnupg-enclosing-folder-gpg-warning
https://earthly.dev/blog/creating-and-hosting-your-own-deb-packages-and-apt-repo/
https://unix.stackexchange.com/questions/318385/no-such-file-or-directory-when-generating-a-gpg-key
https://unix.stackexchange.com/questions/403485/how-to-generate-the-release-file-on-a-local-package-repository
https://unix.stackexchange.com/questions/687043/how-to-avoid-prompts-for-passphrase-while-clearsigning-a-file
https://superuser.com/questions/954509/what-are-the-correct-permissions-for-the-gnupg-enclosing-folder-gpg-warning
https://medium.com/sqooba/create-your-own-custom-and-authenticated-apt-repository-1e4a4cf0b864
https://itsfoss.com/apt-key-deprecated/

2025/12/28 17:49 11/11 Setup Debian Repository (Apache)

Fixes | Public BIT Wiki - http://fixes.brecht-schule.hamburg/

Signing InRelease file:

gpg --default-key <ID> --clearsign -o InRelease Release

Apache config to hide .db files from apt-ftparchive, add this to site repository.conf:

<Files packages-amd64.db>
 Require all denied
</Files>

Automated file signing of password protected keys: unix.stackexchange.com - Sign files with gpg
automatically with password-protected keys

From:
http://fixes.brecht-schule.hamburg/ - Fixes | Public BIT Wiki

Permanent link:
http://fixes.brecht-schule.hamburg/linux/debian/setup-repository

Last update: 2025/02/11 08:12

https://unix.stackexchange.com/questions/687043/how-to-avoid-prompts-for-passphrase-while-clearsigning-a-file
https://unix.stackexchange.com/questions/687043/how-to-avoid-prompts-for-passphrase-while-clearsigning-a-file
http://fixes.brecht-schule.hamburg/
http://fixes.brecht-schule.hamburg/linux/debian/setup-repository

	[Setup Debian Repository (Apache)]
	Setup Debian Repository (Apache)
	Build custom package
	Create executeable package
	Build a .deb package

	Setup repository server
	Create directories
	Setup apache2
	Create GPG Keys
	Create Release files
	Sign Release file
	Add custom repository
	Proper way
	Deprecated ways

	Repository extensions
	Additional settings
	Sources

	Other helpful commands

